PRESSURE DEPENDENCE OF THE CARRIER CONCENTRATIONS...

FIG. 5. Number of electrons in sample 7B as a function of pressure. The points are the values of *n* deduced from the experimental data. The lines are calculated from the Kane's $\vec{k} \cdot \vec{p}$ model with $P_K = 8.4 \times 10^{-8}$ eV/cm, $\alpha = dE_g/dP = 7.0 \times 10^{-6}$ eV/bar.

kbar), *R* is constant initially and then shows strong quantum effects but remains negative. The resistivity rises very rapidly with transverse magnetic field from 0.03 Ω cm to more than 80 Ω cm at 20 kG. At high fields the Hall angle was less

FIG. 6. Electron mobility as a function of pressure for the three samples. The variation of the reciprocal effective mass due to the change in E_g is shown by the dashed lines for comparison. The mobility is seen to increase faster than $1/m^*$ at low pressure, and for sample 7B at 4.2 °K to turn downward above 2 kbar.

		TAB	SLEI. Values for t	the carrier conce	intrations and mobiliti	les at atmospher	ic pressure.		
	-	77	У.,	<i>P</i> =	0	4.2	ж	P=0	
Sample	x	p (cm ⁻³)	μ_{p} $(cm^{2}V^{-1} sec^{-1})$. " (cm ⁻³)	$\mu_{\pi}^{\mu_{\pi}}$ (cm ² V ⁻¹ sec ⁻¹)	p (cm ⁻³)	$({\rm cm}^2 {\rm V}^{-1} { m sec}^{-1})$	n (cm ⁻³)	$(\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{sec}^{-1})$
7B	0 . 149 ± 0 . 005	1.5×10^{16} $(P > 5 \text{ kbar})$	450 (P>5 kbar)	5.3×10^{15}	3.7×10 ⁵ .	:	:	3.4×10 ¹⁴	6.3×10^{5}
7B1.	$0_{\bullet}149 \pm 0.005$	6.3×10^{17}	174	3.0×10^{15}	3.2×10^{4}	1.5×10^{17}	76	8.8×10^{14}	4.6×10^{4}
8B	0.138 ± 0.005	8.3 × 10 ¹⁷	168	4.8×10 ¹⁵	2.5×10^{4}	7.6×10 ¹⁷	78	3.2×10^{15}	1. 6×10^{4}

2989